
The Crouton Algorithm for Optimal Addition
Chains

Neill Clift∗

April 5, 2024

Abstract

We describe a new algorithm for calculating optimal addition chains
that has very good performance for single values. The algorithm performs
well with or without a database of previously created optimal addition
chain lengths. Improved performance comes from the realization that
the end of an addition chain can be viewed as a vector addition chain.
The values generated by the start of the addition chain together with the
values from the trailing vector addition chain satisfy a linear Diophantine
equation. By broadening the search tree by differentiating cases based on
which constructed chain elements will be used in the future, a collection of
new pruning techniques are possible. Estimates of the minimum Hamming
weight of solutions to a linear Diophantine equation along with bounds
propagation techniques are used to prove that partially constructed chains
will not be successful and hence can be pruned.

Introduction
An addition chain is a finite sequence of integers (we call elements) 1 = a0 <
a1 < . . . < ar = n with ai = aj + ak, i > j ⩾ k ≥ 0 for a target n of length
r. We will refer to an addition chain as formal if we explicitly specify how
each element is constructed. For example the chain 1, 2, 3, 4 has two ways of
constructing 4 since 4 = 2 + 2 = 1 + 3. We denote with l(n) the length of
the optimal (shortest) addition chain for n. We will call each ai, i > 0 a step.
We define λ(n) = ⌊log2(n)⌋ and use it to partition the steps into two cases. If
λ(ai) = λ(ai−1) we say it is a small step. Otherwise we must have λ(ai) =
λ(ai−1) + 1 and call it a large step. A step of the form ai = ai−1 + aj , i > j
is called a star step. If we denote with s(n) the number of small steps in an
optimal chain for n we must have s(n) = l(n)− λ(n). We will denote with v(n)
the binary digit sum of n. The smallest target with an optimal addition chain
of length r is denoted with c(r). Knuth [11] notes that proving via computer

∗NeillClift@live.com

1

searches that l(c(r)) > r− 1 is particularly time consuming. On the other hand
finding an addition chain of length r for c(r) appears quite fast in comparison.
Scholz and Brauer [13, 3] conjectured (Scholz-Brauer conjecture) and partially
proved that l(2n − 1) ≤ l(n) + n − 1. Stolarsky [14] noted that he saw only
equality in all values he could prove (l(2n − 1) = l(n) + n − 1). Knuth and
Stolarsky [10, 14] conjectured (Knuth-Stolarsky conjecture) that v(n) ≤ 2s(n).
This conjecture has been proved for s(n) ≤ 3 [16, 7] and that v(n) > 8 requires
s(n) ≥ 4.

History of Computer Calculations
Knuth appears to have written the first computer program for calculating op-
timal addition chains in December 1963 (private communication). He used a
program written in Algol that ran on the Burroughs B5000 computer and cal-
culated all optimal addition chains for n ≤ 1024. He did further calculations on
the CDC 6600 in assembler [12]. He worked backward from the target splitting
n = p + q, p ≥ q and used memoization of prior calculated l(n) values. The
properties of the function l(n) are very interesting and often counter intuitive.
As each new technique is developed to calculate optimal chains for larger targets
new properties often emerge. The first computer calculations for example found
l(n) = l(2n) with n = 191. Kato [9] found minimum length merges of addition
chains for n − k and k with 1 ≤ k ≤ n

2 as well as enumerations of partitions
for n − 1 to find addition chains for n. A breadth first search (BFS) was used
by Chin and Tsai [5] to find optimal addition chains. They attempted to prune
by having all early steps being doubles but discovered that there are only two
optimal chains for 2617 and both include the element 5. Tsai [17] found optimal
chains for batches of numbers and forced the construction of the final element
in a chain to be a star step. Brlek and Mallette [4] calculated batches of op-
timal addition chains and used bounds for addition chain elements. Using the
nomenclature developed by Thurber [15] these would be the most simple class
1 (sequence A) bounds so that an element ai for an optimal addition chain for
n of length r is bounded by ai ≥

⌈
n

2r−i

⌉
. Bleichenbacher and Flammenkamp [8]

made huge strides by calculating all l(n) for n ≤ 222 by using graph reductions
and memoization of computed l(m),m < n values for computing l(n). Thurber
[15] developed a set of bounds for the elements of an addition chain and the sum
of two consecutive elements. These can be used in an addition chain algorithm
when elements are selected to cut down the search space. They can also be
used to work out the minimum number of steps between two given values in
an addition chain. Bahig [1] outlined conditions where steps must be star and
limits on the types of non-star steps and hence cut down the time needed to
generate branches in the search tree. Clift [6] calculated batches of addition
chains using graph enumeration avoiding sub-graphs proven to not be present
in optimal chains.

2

Broadening the Search Tree
Prior work has shown that the end of an addition chain can be viewed as a
vector addition chain that consumes some of the earlier values to get to the
target. We can show that the number of elements from the start of the chain
that are consumed must be small and related to the small step count of the
target. With this in mind we will describe an algorithm that splits the problem
such that a small packet of numbers (called a crouton) is selected at each stage
that must be used by the chain in the future. A crouton can also be thought
of as the temporary variables needed to compute the rest of the chain. This
will make the search tree broader but enable new pruning techniques. We will
then show how to bound the values in the vector addition chain such that many
cases can be rejected early.

Recursive Algorithm Outline
We now describe the initial state and recursive transformation the new algorithm
uses to traverse the search space. We will be searching for an optimal addition
chain A = b0 < b1 < . . . < bd = n for n of length d ≤ l(n). Obviously when
d < l(n) the search for a chain will fail. We will say we are at depth r with
0 ≤ r ≤ d and mean we have generated the sequence 1 = b0 < b1 < . . . < br. At
depth r though we will not keep or use all bi, 0 ≤ i ≤ r but instead we will have
chosen to use a subset of these values a1 < a2 < az with z ≥ 1. There must be
a mapping α such that ai = bα(i). Each ai < n must be consumed in at least
one addition chain step β(i) > r so bβ(i) = ai + bj with j < β(i).

Initial State
We start with a single crouton < 1 >. So a1 = b0 = 1 and z = 1.

Recursive Transformation
If we start with a crouton < a1, . . . , az > we form a new element az+1 =
ai + aj , i ≥ j. From this we potentially can form up to four new croutons to
search:

< a1, . . . , az+1 >The new crouton has z + 1 elements.
< a1, . . . , ai−1, ai+2, . . . , az+1 > The new crouton has z elements since ele-

ment ai is dropped.
< a1, . . . , aj−1, aj+2, . . . , az+1 > The new crouton has z elements since ele-

ment aj is dropped.
< a1, . . . , aj−1, aj+2, . . . , ai−1, ai+2, . . . , az+1 >, i ̸= j The new crouton has

z − 1 elements since elements ai, aj are dropped.

3

Termination State
The final crouton at depth d must be < a1 = n > if the search is successful.
The initial and termination state along with the fact that the recursive step can
only increase or decrease z by at most 1 leads to the following simple bounds:

z ≤ min(r + 1, d− r + 1)

Bounding the Crouton’s Size
Let < a1, a2, ..., az >be a crouton with z ≥ 1. Let these ai be part of an op-
timal addition chain within the first r + 1 values for n with l(n) = d. Hence
{ai|1 ≤ i ≤ z} ⊂ A where A is an addition chain for n. Further we will specify
that the members of the crouton are the only elements in the addition chain
within the first r+1 values that are used in the rest of the chain. We specify that
all elements in the crouton must be used later in the chain. From the requirement
that A is an optimal chain we must have l({a1, a2, . . . , az}) = r. The correspond-
ing vector chain that consumes the crouton must have l([x1, x2, . . . xz]) = d− r
and hence l({x1, x2, . . . xz}) = d− r − z + 1. We know that

n ≤ 2d−r−z+1
z∑

i=1

ai

≤ 2d−r−z+1
z∑

i=1

2r+1−i

≤ 2d−2z+2(2z − 1)

From s(n) = l(n)− λ(n) we obtain

s(n) = d− λ(n)

≥ d− λ(2d−2z+2(2z − 1))

≥ 2z − 2− λ(2z − 1)

≥ z − 1

From this we can see that the crouton remains small since s(n) is slow growing.

The Frobenius Equation
Our two addition sequence problems are linked because the vector addition
chain consumes the elements of the crouton to reach the target. So from
l({a1, a2, . . . , az}) = r and l({x1, x2, . . . xz}) = d− r − z + 1 we know that:

z∑
i=1

aixi = n (1)

4

We can prune the search tree by proving there are no solutions to the Frobenius
equation when limited by the complementary addition sequence problem. The
most obvious way of eliminating cases uses the GCD:

GCD(a1, a2, . . . , az)|n
The many divisions needed to calculate the GCD make this test better done
after the following bounds on xi. For example we must have

1 ≤ xi ≤ 2d−r−z+1

We can do much better than this though if we can estimate a lower bound for
s({x1, x2, . . . , xz}). We can do this by getting a lower bound for

z
max
i=1

v(xi)

We start with

v(n) =v

(
z∑

i=1

aixi

)

≤
z∑

i=1

v(aixi)

≤
z∑

i=1

v(ai)v(xi)

≤ z
max
i=1

v(xi)

z∑
i=1

v(ai)

So we have
z

max
i=1

v(xi) ≥
⌈

v(n)∑z
i=1 v(ai)

⌉
(2)

From both theory and computational results available via pre-computed l(n) we
have:

s(x) ≥ sl(x) =

{
⌈log2(v(x))⌉ v(x) ≤ 64

7 v(x) > 64

Immediately we can see that

1 ≤ xi < 2d−r−z+2−maxz
i=1 sl(xi)

For maxzi=1 sl(xi) ≤ 6 we have maxzi=1 v(xi) ≤ 2maxz
i=1 sl(xi). We can therefor

refine the limit. The maximum value in a chain of length l with at least s =
maxzi=1 sl(xi) small steps must be:

5

xi ≤2l−s + 2l−s−1 + · · ·+ 2l−s−2s+1

≤2l+1−s−2s(22
s

− 1)

1 ≤ xi ≤ 2d−r−z+2−maxz
i=1 sl(xi)−2maxzi=1 sl(xi)

(22
maxzi=1 sl(xi) − 1) (3)

Many cases are rejected in practice by applying this bound to the original Frobe-
nius equation:

n ≤
(

z
max
i=1

xi

)(z∑
i=1

ai

)
(4)

Practically this inequality is not satisfied in a significant proportion of cases and
search times are reduced considerably. This pruning will be made clearer with
an example.
When trying to find an optimal chain for 42833 of length 19 (which must succeed
since computer calculations show l(42833) = 19) we get to a depth r = 8 with
the crouton< 5, 32, 67 >. We could have gotten to this point in the search with
the partial addition chain 1, 2, 3, 5, 8, 16, 32, 64, 67.
From 1 we have the following Frobenius equation to solve:

5x1 + 32x2 + 67x3 = 42833

From 2 maxzi=1 v(xi) ≥
⌈

v(n)∑z
i=1 v(ai)

⌉
= 2. So at least one xi must have v(xi) ≥ 2

so that maxzi=1 sl(xi) ≥ 1 and hence that s({x1, x2, x3}) ≥ 1 and so from 3
xi ≤ 384. We can immediately abandon this search since from 4 we have the
contradiction 42833 ≤ 384(5 + 32 + 67) = 39936.

Better Estimates for maxzi=1 v(xi)

Bounding the size of the maxzi=1 v(xi) has such a large effect on performance
that trying to get a better estimate of maxzi=1 v(xi) can be worthwhile even it
it takes a non-trivial amount of computation.
If we say that n mod m represents the least non-negative element from the
residue class modulo m. It is curios that:

v(n mod (2i − 2j)) ≤ v(n), i > j (5)

To prove this we will assume a smallest counter example v(r) > v(n) with
r = n mod (2i − 2j). We must have n > r. We will first assume that the binary
representation of n contains a power of two (2i+k, k ≥ 0). Since 2i+k ≡ 2i+k −

6

(2i+k − 2j+k) (mod(2i − 2j)). We have a contradiction since v(n− 2i+k +2j+k)
would be a smaller counter example from the residue class:

v(n− 2i+k + 2j+k) ≤v(n− 2i+k) + v(2j+k)

≤v(n)− 1 + 1

≤v(n)

<v(r)

We may therefore assume that 2i − 2j < n ≤ 2i−1 − 1. The binary represen-
tation of n must be 2i−1 + 2i−2 + · · · + 2j + · · · and we obtain the following
contradiction:v(n− (2i − 2j)) < v(n) < v(r) since n− (2i − 2j) < n.
From this we obtain the following inequality:

z
max
i=1

v(xi) ≥
z

max
i=1

v(xi mod m) ≥
⌈

v(n mod m)∑z
i=1 v(ai mod m)

⌉
, m = 2j − 2k, j > k

(6)
Proof:

n mod m =(

z∑
i=1

aixi) mod m

=(

z∑
i=1

(ai mod m)(xi mod m)) mod m

v(n mod m) =v((

z∑
i=1

(ai mod m)(xi mod m)) mod m)

≤v(

z∑
i=1

(ai mod m)(xi mod m))

≤
z∑

i=1

v(ai mod m)v(xi mod m)

≤ z
max
i=1

v(xi mod m)

z∑
i=1

v(ai mod m)

This is a generalization of the realization that the bottom k (2k = 2k+1 − 2k)
bits of n can be determined only by the bottom k bits of ai and xi. This
will be clear in the following example. With the crouton < 5, 8 > at depth
r = 4 while trying to find an addition chain for n = 35. From 2 we would
have maxzi=1 v(xi) ≥

⌈
v(n)∑z

i=1 v(ai)

⌉
= 1. If we instead look at the bottom two

bits (k = 2) then maxzi=1 v(xi) ≥
⌈

v(n mod 2k)∑z
i=1 v(ai mod 2k)

⌉
=
⌈
2
1

⌉
= 2. This window

method will also detect in-feasibility when 2k|GCD(a1, a2, . . . , az) but 2k ∤ n.

7

An example from the more general case has a crouton of < 25, 84 >at depth
r = 8 while searching for an addition chain for n = 42163 of length d = 19 <
l(42163) = 20. This search will fail. We could have encountered this situation
via the partial chain 1, 2, 4, 8, 16, 17, 25, 42, 84. With m = 12 we get:

z
max
i=1

v(xi) ≥
⌈

v(n mod 12)∑z
i=1 v(ai mod 12)

⌉
=

⌈
3

1

⌉
= 3

So we must have s({x1, x2}) ≥ 2 and so from 3xi ≤ 480. This is not enough
to prune this path completely since (25 + 84)480 > 42163 but it limits the
possibilities for the xi.
We may obtain a similar bound by multiplying both sides of 1 by a constant m:

z
max
i=1

v(xi) ≥
⌈

v(mn)∑z
i=1 v(mai)

⌉
(7)

Practically only m = 3 seems to allow performance improvements. For example
with the crouton < 34, 43, 86 > at depth r = 9, n = 58951 and d = 20 we
obtain:

z
max
i=1

v(xi) ≥
⌈

v(3n)∑z
i=1 v(3ai)

⌉
=

⌈
10

8

⌉
= 2

So we must have s({x1, x2}) ≥ 1 and so from 3xi ≤ 384.

Enumerating Solutions
For problems that appear small it helps the performance of the algorithm to
attempt to enumerate all the solutions to the Frobenius equation and attempt
to eliminate them by finding a lower bound for l({x1, ..., xz}). Knowing the
bounds of xi and also the bounds of s({x1, ..., xz}) enumerating problems with
values for each li ≤ xi ≤ ui with ui − li ≤∼ 300 seems to work well. Trying to
solve the Frobenius equation directly using the extended GCD algorithm is too
expensive. Presumably because of the many divides needed. Improving li, ui

via the standard techniques of constraint satisfaction appears to be too slow as
well. The best method found is to use a depth first search starting with the xi

corresponding to the largest ai.
We will follow an example to see the sort of pruning done. We have the crouton
< 16, 17, 67 > at depth r = 8 for an addition chain for n = 152557 of length
d = 21 < l(152557) = 22. So this search will eventually fail. We have a1 = 16,
a2 = 17 and a3 = 67. Simple bit counting has

⌈
v(152557)

v(16)+v(17)+v(67)

⌉
= 2. So

ui ≤ 1536 and li ≥ 1. Using 4 we know that s({x1, x2, x3}) = 1 and hence
v(xi) ≤ 2. With these bounds we can compute the initial bounds for x3:

1521 ≤ x3 ≤ 1536

1536 ≤ x3 ≤ 1536 (using v(x3) ≤ 2)

8

The value x3 = 1536 can immediately be dismissed since v(152557−67.1536) = 9
and v(a1x1 + a2x2) ≤ 6. If this were not the case we would set a3 = 1536
and repeat the bounding process for a2 with n = 152557 − 67.1536. Pruning
techniques like the binary digit count of xi work well because they can eliminate
a large number of possibilities quickly. This examples shows another way to
reduce the range via the most significant bit of u3 = 1536. If we assume that
x3 ≥ 2λ(u3) then

6 ≥ v(n− a3x3)

= v(n− 2λ(u3)a3 − a3(x3 − 2λ(u3)))

≥ v(n− 2λ(u3)a3)− v(a3)(v(x3)− 1)

≥ 9

So x3 < 1024. This process can obviously be repeated for the new most signifi-
cant bit of u3 if there is still a valid range for x3.

Results
To see the potential of this pruning technique in searching for addition chains I
took the code used by Ed Thurber to investigate the number of optimal addition
chains for n defined as NMC(n). The code had a simple stack of numbers
representing the end of a partial addition chain at various depths. New elements
are pushed onto the stack by summing all previous elements and pushing them
on the stack if they satisfy the addition chain bounds. Duplicates are removed.
The code was changed to push croutons on a stack and prune not only with the
addition chain bounds but also the bounds described by 4, 2, 6 with modulo
2k and 7 with the multiplier of 3. The new code searches for formal addition
chains were chain construction is differentiated by how elements are constructed
as well as their value. So we must filter out duplicates. Despite this we see a
big improvement in performance as show in table .
Bahig [2] conjectured that there is always an optimal addition chain for n with
the last

⌊
l(n)
2

⌋
steps star. The first counter example is 5979345 whose 16 optimal

addition chains of length 27 each have two small steps:
1 2 4 8 16 17 32 49 81 162 324 648 1296 2592 5184 5201 10368 20736 25937
46673 93346 186692 373384 746768 1493536 2987072 2992273 5979345

References
[1] Hatem M Bahig. Improved generation of minimal addition chains. Com-

puting, 78(2):161–172, 2006.

9

Table 1: Times to Calculate NMC values
n ≤ Old Seconds New Seconds
28 0.3 0.2
29 2.8 1.1
210 26.8 6.0
211 251.1 32.8
212 2676.0 199.4
213 27248.6 1226.5

Table 2: Effects of different Pruning Techniques
n STN CR CR+G CR+GB CR+GBD

5979345 All chains 1.1 1.7 0.7 0.1 <0.1
s(375494703) > 6 554.4 886.1 310.5 29.3 5.2

s(c(27) = 2211837) > 5 6.3 10.2 4.1 0.6 0.1
s(c(30) = 14143037) > 6 49.8 85.3 30.3 4.6 0.8
s(c(32) = 46444543) > 6 292.3 483.8 168.5 16.0 2.5

s(6580895885) > 6 549.4 945.0 286.2 33.1 6.2
s(6442718499) > 6 714.3 1158.7 383.8 38.4 7.3
s(6442517597) > 6 652.0 1125.3 336.1 27.4 5.3
s(231 − 1) > 6 53.9 100.5 29.7 0.3 0.1
s(235 − 1) > 6 100.5 188.5 52.6 0.5 0.1
s(237 − 1) > 6 135.2 257.2 68.6 0.2 0.1
s(239 − 1) > 6 179.4 340.6 112.0 0.1 <0.1
s(241 − 1) > 6 234.7 449.7 113.1 <0.1 <0.1

STN - Single value algorithm [6]
CR - Crouton, +G with GCD pruning, +B bounds 4 +D memoized l(n) data.

Table 3: Time vs. Binary Digit Sum
n CR+GE CR+GED

s(247 − 1) > 7 104.4 36.8
s(253 − 1) > 7 61.9 20.6
s(255 − 1) > 7 60.2 21.7
s(257 − 1) > 7 41.2 20.6
s(258 − 1) > 7 48.0 16.7
s(259 − 1) > 7 39.9 35.8
s(261 − 1) > 7 31.8 30.5
s(262 − 1) > 7 37.6 14.5
s(263 − 1) > 7 33.4 16.1

10

[2] Hatem M Bahig. Star reduction among minimal length addition chains.
Computing, 91(4):335–352, 2011.

[3] Alfred Brauer. On addition chains. Bulletin of the American Mathematical
Society, 45(10):736–739, 1939.

[4] R. Brlek, S.;Mallette. Sur le calcul des chaÃ®nes d’additions opti-
males. Atelier de combinatoire franco-quÃ©becois (6-7 Mai 1991, Bor-
deaux, France), pages 71–85, 1992. Publ. du LACIM 10, ISBN 2-89276-
101-8.

[5] YH Chin and YH Tsai. Algorithms for finding the shortest addition chain.
In Proceedings of national computer symposium, Kaoshiung, Taiwan, De-
cember, pages 1398–1414, 1985.

[6] Neill Michael Clift. Calculating optimal addition chains. Computing,
91(3):265–284, March 2011.

[7] A. Flammenkamp. Drei beitrÃ€ge zur diskreten mathematik: Additions-
ketten, no-three-in-line-problem, sociable numbers, 1991.

[8] D. Bleichenbacher; A. Flammenkamp. An efficient algorithm for computing
shortest addition chains. 1997.

[9] H. Kato. On Addition Chains. PhD thesis, University of Southern Califor-
nia, 1970.

[10] Donald E Knuth. The art of computer programming, 2: seminumerical
algorithms, Addison Wesley. 1969.

[11] Donald E Knuth. The art of computer programming, 2: seminumerical
algorithms, Addison Wesley. 1998.

[12] Donald Ervin Knuth. Calculations on addition chains. 1969.

[13] Arnold Scholz. Aufgabe 253 (problem 253). Jahresbericht der deutschen
Mathematiker-Vereinigung, 47(2):41–42, 1937.

[14] Kenneth B Stolarsky. A lower bound for the scholz-brauer problem. Canad.
J. Math, 21:675–683, 1969.

[15] Edward G. Thurber. Efficient generation of minimal length addition chains.
SIAM Journal on Computing, 28(4):1247–1263, 1999.

[16] E.G. Thurber. The Scholz-Brauer Problem on Addition Chains. PhD thesis.

[17] Y.H. Tsai. A study on some addition chain problems. Master’s thesis,
National Tsing-Hua University, Hsinchu, Taiwan, 1985.

11

